Critical technologies for the future ocean energy farms

Critical technologies for the future ocean energy farms

The transition of the energy system will rely on reducing the overall energy demand and making the energy supply side climate neutral, in current and future climate conditions. R&I actions will help to make the energy supply side cleaner, more secure, and competitive by boosting cost performance and reliability of a broad portfolio of renewable energy solutions, in line with societal needs and preferences.

Projects are expected to address at least one of the following areas:

1. Components and systems used in energy in ocean energy devices need to be resistant to corrosion and the heavy loads they are subject to. Develop new sustainable materials with improved fatigue, damping, stiffness, sustainability and bio-fouling management or other cost-reducing characteristics. Materials such as reinforced concrete, polymers, composites, and concrete-steel/composite-steel hybrids systems have demonstrated some advantages such as reduced costs. Demonstrating the potential benefits of these new sustainable materials in ocean energy converters, moorings and foundations whilst ensuring structural integrity, durability and circularity is required. Advance the design of sustainable tailored mooring and connection of electrical or other power transmission systems for floating or subsea wave and tidal devices. Advance combined mooring and electrical connectors or hydraulic power transmission to reduce component cost and number of connection operations, included in systems for sharing an anchor between devices in arrays. Develop novel systems for safe and quick connection/disconnection that do not require large vessels and/or diving teams.

2. Instrumentation for condition monitoring and predictive maintenance of ocean energy devices. Apply recent advances in condition and structural health monitoring from other sectors to ocean energy – particularly those currently developed for offshore wind. Apply latest sensor technology to existing ocean energy deployments. Document and share experience on sensors performance and reliability, and methods for adapting them to the harsh ocean energy environment. Improve transmission or storage of data collected from sensors, such as underwater data transmission.

3. Artificial Intelligence (AI) in ocean energy technology development. Develop or apply advanced simulation of ocean energy systems. Use of big data with analysis of data streams, application of big data methods and machine learning, including artificial intelligence, or digital twin models for the design, installation, operation and decommissioning of ocean energy devices.

  • Availability of disruptive sustainable renewable energy and renewable fuel technologies & systems accelerating the replacement of fossil-based energy technologies to achieve climate neutrality in the energy sector by 2050, considering future climate conditions, and without harming biodiversity, environment and natural resources.
  • Reduced cost and improved efficiency of sustainable renewable energy and renewable fuel technologies and their value chains.
  • Support de-risking of sustainable renewable energy and fuel technologies with a view to their commercial exploitation to contribute to the 2030 “Fit for 55” targets increasing the share of renewable electricity, heat and fuels in the EU energy consumption (in particular, 40% renewable energy overall, 2.2% advanced biofuels and 2.6% renewable fuels of non-biological origin).
  • Better integration of sustainable renewable energy and renewable fuel-based solutions in all economic sectors, including through digital technologies.
  • Enhanced security and autonomy of energy supply in the EU, while accelerating the green transition.
  • Affordable, secure and sustainable energy solutions to diversify gas supplies in the EU by increasing the level of biomethane.
  • Reinforced European scientific basis and European export potential for renewable energy technologies through international collaborations (e.g., the AU-EU Climate Change and Sustainable Energy partnership, the missions and innovation communities of Mission Innovation 2.0).
  • Enhanced sustainability of renewable energy and renewable fuels value chains, taking fully into account circular economy, social, economic and environmental aspects in line with the European Green Deal priorities.
  • More effective market uptake of sustainable renewable energy and fuel technologies to support their commercialisation and provide inputs to policy making.
  • Increased knowledge on the environmental impacts of the different renewable energy technologies along their lifecycle and value chains.

Previous projects funded under this topic: 128 

proposals submitted, results expected in July 2023

See other EU-Call